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E S T I M A T E  O F  T H E  S T R E N G T H  O F  A P L A T E  W I T H  

A N  E L L I P T I C  H O L E  I N  T E N S I O N  A N D  C O M P R E S S I O N  

S. V.  S u k n e v  UDC 539.4 

The strength of a plate with an elliptic hole under uniaxial tension or compression is estimated 
for arbitrary angles between the ellipse axes and the direction of loading with the use of the 
gradient strength criterion. The calculated critical stress agrees with the existing experimental 
data. 

F o r m u l a t i o n  o f  t h e  P r o b l e m .  We consider a thin isotropic homogeneous linear-elastic plate of a 
brit t le material loaded by the tensile a or compressive p stresses distributed uniformly at infinity. There is 
an elliptic hole at the center of the plate which is oriented at an angle w to the direction of loading (Fig. 1; a 
and b are the major  and minor semiaxes of the ellipse). We determine the critical stress ac(pc) at which the 
limit s tate  (local fracture) occurs in the plate. The averaged mechanical properties of the plate material are 
characterized by the ul t imate stress a0 determined for a hole-free plate. 

In accordance with the traditional approach to strength analysis, a0 is assumed to be a constant of 
the material and the s trength condition is writ ten in the form 

~ < a0. (1) 

Here ar = f (a i j )  is the equivalent stress which characterizes the internal stresses in the body and is a function 
of the stress-tensor components aij in the general case. The critical stress is est imated as follows: 

a~ = ~ 0 / h t .  (2) 

Here Kt is the stress-concentration coefficient which characterizes the ratio of the equivalent stress ar at the 
most stressed point of the body to the applied stress a. 

The  range of applicability of expression (2) is restricted to the case of small Kt,  where the dimension of 
the stress-nonuniformity zone is sufficiently large to assume that  a0 = const. As applied to our case, this means 
that  expression (2) can be used only for small angles a;. As a~ increases, the stress-concentration coefficient 
rapidly increases, and the error of determining the critical stress from formula (2) becomes pronounced, which 

is supported by the experimental  da ta  of [1]. 
To extend the range of applicability of expression (2), some researchers [2-5] suggested using the stress 

condition (1) at the point of maximum equivalent stress located on the external contour that  lies at a certain 
distance from the hole rather  than on the hole boundary. In this connection, the following two questions 
arise: what is the shape of the external contour and how far is it from the hole boundary? Kipp and Sih [2] 
and Malti and Smith [4] used a circle of radius r whose center is located at the point of maximum shear stress 
on the hole boundary, and lVu and Chang [3] and Yeh and Kim [5] used the confocal ellipse with the major 
semiaxis a + r as an external contour. The value of r is chosen for consistency of calculation results with the 
experimental  data. The  critical stress was calculated with the use of different s trength criteria: the maximum 
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Fig. 1 

shear stress and the maximum principal shear stress [4], the maximum principal stress [4, 5], the maximum 
shear strain [3, 4], and the minimum density of strain energy [2. 4]. Comparison between the calculated 
values of ac and the experimental data has not revealed the most adequate strength criterion [4]. Evidently, 
this is due to the fact that  the approximation parameter  r is not associated with the physical mechanisms of 
material fracture. 

A p p l i c a t i o n  o f  t h e  G r a d i e n t  S t r e n g t h  C r i t e r i o n .  Suknev [6] proposed another approach in which 
the hypothesis a0 = const was abandoned. The strength condition is written in the form ae < f (a0 ,  Lo/Le),  
and tile critical stress is determined by the expression ac = min {f(a0, Lo/L~) / (ae /a )}  > 0, where L0 is the 
characteristic dimension of the material s tructure and L~ is the characteristic dimension of the deformable 
region. In the presence of stress concentration, Le is determined by the dimension of the stress-nonuniformity 
zone. If this dimension is sufficiently large compared to the dimensions of the structural components of 
the material, including admissible defects of the s tructure (i.e., the conditions of averaging the mechanical 
properties are fulfilled), the value of the local strength differs slightly from a0. If Lc is comparable to the 
dimensions of the structural elements, their influence on the local strength becomes noticeable; it is the 
more pronounced the smaller the ratio Le/Lo. To estimate L0 and Le, one caI1 use the critical dimension 
of the defect Ic = 2Kc2/(Tra02) (Kc is the critical stress-intensity coefficient) and the curvature radius of a 
concentrator at the "dangerous" point p, respectively. 

Wi th  allowance for these estimates, the local-strength function for the main problem of a plate with 

an elliptic hole (w = 0 and 90 ~ in symmetric tension has the form [6] 

f (ao,  Lo/Le)  = o0(1 + ~ ) .  (3) 

We now extend function (3) to arbi trary angles 0 ~< w' ~< 90 ~ and values of 0 ~< m < 1, where 
m = ( a -  b)/(a + b) is the geometrical parameter,  assuming that  upon tension and compression a detachment- 
like failure occurs, which is determined by normal stresses, i.e., ~re = ao > 0 (0o is the shear stress on the 

hole contour). 
Tension. The problem of crc determination is to find the minimum 

1 + r n  2 -  2tacos 20 + X / 2 1 c ( 1 - m ) / a ( 1  + m)(1 + rn 2 -  2?Tt cos P~0)1/4 ~ 
ac = rain [~r~ ~ - -  m~ ~ ~m ~os ~-~--_ ~ o s  ~-~-_--2- ~ ) '  

(4) 
ac > 0 .  

Here the well-known expression for the stress on the contour of an elliptic hole 0o [7] and the expression for 
the curvature radius of the contour Po = a(1 + m 2 - 2tacos 20)3/~ + m)2(1 - m ) ]  were used. 

The varied parameter  in expression (4) is the angle 0, which satisfies the equation 

A - B sin 20 - C cos 20 - F(O) = 0, (5) 

where A -- 2rosin 2w, B = (1 - m2)(m - cos 2w), C = (1 + m  2) sin 2a', and F(O) = ~/Ic/(2pe)[0.hm sin20(1 - 
m 2 + 2m cos 2w - 2 cos(20 - 2w)) - 2(1 + too- - 2m cos 20) sin(20 - 2~')]. 
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We solve Eq. (5) by the method of successive approximations:  

A - B s i n 2 0  (k) - C c o s 2 0  (k) = F(O(k-1)) ,  k = 1,2 . . . .  , 
(6) 

A ( k ) B  _ C v / B  2 + C 2 _ (A(k))2 20(k) A(k)C + B v / B  2 + C 2 _ (A(k))2 
sin 20 (k) = B2 + 62  , cos = B 2 -t- 62  ' 

where A(k) = A - F(0  (k-l)) and A (~ = A. 

For lc < 2po, the i teration process (6) rapidly converges to provide the required accuracy in determining 

the critical stress. Thus,  for lc /a  = 0.01 and m = 2/3, one iteration is sufficient to determine ac with an 
accuracy of 0.1% over the entire range of variation of the angle a,,. If  lc >> 2po, the i teration procedure fails. 

In practice, this corresponds to the case of a narrow ellipse and large values of a; where Crc remains almost 

unchanged as a3 increases. Therefore, in determining the "dangerous" point,  we can restrict  our analysis to 

the zeroth approximat ion in (6). 
We now consider the case where m ~ 1. The  elliptic hole becomes a cut. At the same time, the real 

crack has a finite radius of curvature at  the tip. In the experiment,  only its length can be measured (with 

allowance for slow crack extension before the unstable growth). Therefore, we have a hole for which a is 

known and p is unknown. Since p is merely the es t imat ing paramete r  for the characteristic dimension Le, 
the outlined procedure for determining the critical stress can be substantial ly simplified. 

For the given angled ellipse, we consider an equivalent symmetr ic  ellipse with the parameters  Kt  = Kt~, 

and ae = a~ which have the form 

1 - m 2 + 2m cos 2w - 2cos (20 - 2w) (1 + m 2 + 2rncos20)  t/2 
Kt~o = 1 + rn 2 - 2m cos 20 , a,~ = a 1 + m (7) 

Here Ift.o is the stress-concentration coefficient of the angled ellipse, 2a,. is the dimension of the angled 

ellipse in the "dangerous" cross section which passes through the points of stress concentration, and 2ae is 
the dimension of the equivalent ellipse in the "dangerous" cross section. The  angle 0 in expressions (7) is 

determined by solving Eq. (6) in the zeroth approximation.  In this case, the radius of curvature  at the vertex 

of the equivalent ellipse Pe is ~estimated by the formula 

Pe = 4a~/(Kto; - 1) 2, (8) 

which follows from the expression for the stress-concentrat ion coefficient for the symmetr ic  ellipse /s = 

1 + 2 vr/T /p  
Now we can use the formula for est imation of the critical stress upon symmetr ic  tension [6]: 

=  0(1 + (9) 

Thus, the initial s t rength problem of a plate in tension for w r 0 and 90 ~ reduces to the equivalent symmetr ic  
problem (w = 90 ~ with local-strength function (3) and est imate (8) for the characteristic dimension Lr 

Compress ion.  The critical stress is determined as Pc = rain {- f (cr0 ,  L o / L e ) / ( a o / p ) }  > 0. Using the 

same expressions for ao and Po as in the case of tension, we obtain 

{ l + m 2 - 2 r n c ~ 1 7 6  
Pc = min - ao 1 - - ' - ~ ' ~ ' ~ m c ~ s 2 w - - -  2~os(20  -- 2-'ww) , Pc > 0. (10) 

The  angle 0 is determined by solving Eq. (5) with the use of the i teration procedure (6): 

A ( k ) B  + C v / B  2 + C 2 _ (A(k))2 A(k )C  _ B v / B  2 + C 2 (A(k)) 2 
sin 20 (k) = cos 20 (k) = - 

B 2 + C 2 ' B 2 + C 2 

Here A (k) = A - F(O (k- l ) )  and A (~ = A. 
C o m p a r i s o n  b e t w e e n  T h e o r e t i c a l  a n d  E x p e r i m e n t a l  D a t a .  The  expressions for the critical 

stress (4), (9), and (10), which were obtained on the basis of the gradient criterion, were used to est imate 

the s t rength of po lymethylmethacry la te  (PMMA) plates with elliptic holes subjected to uniaxial tension or 

compression. 
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Wu, Yao, and Yip [1] tested tensioned plates 380 mm long, 152 mm wide, and 3.2 mm thick. The 
semiaxes of the elliptic hole were a = 12.7 mm and b - 2.5 mm. The critical load was determined at the 
instant the specimen began to fail, which occurred suddenly. Figure 2a shows experimental data  (points) 
and the critical stress calculated by formulas (4) and (9) (curves 1 and 2, respectively) and formula (2) (the 
dashed curve). It is noteworthy that  the calculation by formula (9) is simpler compared to that  by formula 
(4). 

Williams and Ewing [8] tested tensioned plates 305 mm long, 152 mm wide, and 3.2 mm thick. The 
holes were shaped like narrow slits with ends notched by a razor blade. The critical load was determined at 
the instant the specimen began to fail. In the process, the specimens in which the crack extension was no 
greater than  0.3 mm before the onset of unstable growth (fracture) were used. Figure 2b (for a = 12.7 mm) 
and c (for a = 17.8 mm) shows experimental data  (points) and the critical stress calculated by formula (9) 
(solid curves). One can see that  the theoretical results agree with the experimental data. Since the radius of 
curvature at the notch tip was not measured, the value of p = 0.02 used in the experiments was obtained by 
approximating the experimental data. The dashed curves refer to calculation results by formula (2). 

Tirosh and Catz [9] tested 8-mm-thick compressed square plates with a side of 50 mm. The holes 
made by a CO2 laser were shaped like slits of length 14 mm and roundness diameter 0.43 mm at the tip. The 
experimental dependence of the critical compressive stress pc(w) normalized to the critical tensile stress ac 
determined for ~ = 90 ~ is shown ill Fig. 3 by dots. Figure 3 also shows the ratio pc(,:)/~c(Tr/2) calculated by 
formulas (10) and (4) (the solid curve), which agrees with the experimental data  (points). The dashed curve 
was obtained with the use of criterion (1). 

Thus, the local-strength function (3) determined on the basis of the gradient approach [6] can be used 
to estimate the strength of a plate with an elliptic hole both in tension and compression. This is supported 
by comparison between the predicted critical stress and the existing experimental data  obtained on PMMA 
specimens. 
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